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LCP 14:       THE PHYSICS OF STAR TREK         April 22 

 

 
 

                                                 Fig. 1 The Starship Enterprise  

 
This LCP is based largely on an article published in the special Christmas edition of 1981  

of the British journal New Scientist:  

 

“The Physics of Star Trek” by Arthur Stinner and Ian Winchester. (See  references) 

 

 In addition, the following article is used: 

 

Stinner, A. and Metz, D. (2006). Thought Experiments, Einstein, and Physics Education.       

 Physics in Canada, pp. 27-37. (Nov./Dec. 2006). (The article can be downloaded from              

 the website of the author).  

___________________________________________________________________________________________________________________________________________ 

http://home.cc.umanitoba.ca/~stinner/stinner/pdfs/2006-thoughtexperiments.pdf 

 

"But I canna change the laws of physics, Captain!" - Scotty, to Kirk. 

Captain James T. Kirk:          “Evaluation, Mr. Spock”. 

Commander Spock:               “It's life, Captain, but not life as we know it”.  

 

Captain Kirk is often heard saying such things as: "Let's come to a full stop", and  

 "Let's turn around", when the Enterprise is at high speeds, say .5 c. 

 

What problems would you encounter in carrying out these commands?  
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           Fig. The crew of the Spaceship Enterprise:   Capt. Montgomery ,“Scotty”, Scott. 
         Commander Leonard 'Bones' McCoy, M.D., Commander Spock, and Captain Kirk. 

 

IL *** A brief history of the original Star Trek Series 

http://en.wikipedia.org/wiki/Star_Trek_TOS 

 

We will study motion in the three regions of physics:  
 

 1.   Speed of less than 10% the speed of light (Newtonian), 

 2.    Speed greater than 10% but less than the speed of light (Einsteinian), and     

 3.   Speed greater than the speed of light (superluminal, or tachyon-like).  

 

Videos: 
 

ILV 1  *** 

http://video.google.ca/videosearch?hl=en&q=Star%20trek&um=1&ie=UTF-8&sa=N&tab=wv# 
Look at: 

Star Trek: The Last Episode. (Very entertaining) 

Top 10 Star Trek Technobabbles (Science and science fiction) 
ILV 2 *** 

http://video.google.ca/videosearch?hl=en&q=physics%20and%20Star%20trek&um=1&ie=UTF-

8&sa=N&tab=wv# 
Look at: 

Science of Star Trek: Transporters  
The Physics of Star Trek Review                                   
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The Physics of Star Trek Warp Drive 

The Physics of Starship Firepower- Phasers & Disintregration  

The Physics of Movie Monsters: The Cube Square Law  

Don's Frickin' Physics Project 

"Jumper" & Real Teleportation  

 

 
 

                                                      Fig. The Enterprise in action  

 

IL  *** Brief biography of  Star Trek 

http://en.wikipedia.org/wiki/Star_Trek 

 

THE MAIN IDEA 
 
The TV series Star Trek has captured the imagination of generations of students since it was introduced in 

the late 1960's. The original cast was later replaced by a new one in the series "Star Trek, the New 

Generation". However, those who have grown up with the original series seem to prefer it, as attested by 

the fact that the new series is run concurrently with the old one.     

 The episodes of Star Trek concentrate on speculating on the personal and social interaction in a 

galactic society of the twenty third century. For such a society to be able to interact at all we must 

postulate a high technological achievement, indeed. The level of technological and scientific achievement 

is indicated by having the Star Ship Enterprise travel at a speed faster than that of light, and making the 

teleportation of the crew from the surface of a planet to the Enterprise seem plausible.  

     While some of these are not impossible, according to contemporary physical theory particles with 

a rest-mass cannot travel faster than the speed of light, in fact cannot travel as fast as the speed of light. 
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Moreover, teleportation, a la Star Trek seems to contradict the second law of thermodynamics (see: "The 

Notion of Energy").    

 

 

  In Star Trek the dramatic setting therefore is based on two assumptions:         

      1.  That an Earth Star Ship can make contact with other civilizations in other star 

 systems and even galaxies,  

 2..  That Captain Kirk, Mr Spock, Dr. McCoy, and the rest of the crew are isolated 

 from their star base on earth so that they must make all crucial decisions affecting 

 these civilisations by themselves. These assumptions in turn presuppose (take it 

 for granted),    

            3.  That faster-than - light travel for a physical object like a Star Ship be possible,               

            4.  That extraordinary means of communication involving faster than light 

 transmission be available to the Enterprise in communicating with Starbase.   

Our strategy will be to devise a sequence of problems and invite you to consider a series of questions that 

would naturally occur to Captain Kirk and Mr. Spock in travelling on their journeys or planning them. 

Since this is an advanced assignment it will not be specifically spelled out what you must know before 

attempting to solve the problems. The physics required beyond elementary relativity theory, however, will 

be discussed in some detail. As well, the relevant equations will be provided.  

      Part A deals with the physics of space travel using only Newtonian mechanics. In part B we shall 

deal with problems that require elementary relativistic mechanics only. Part C deals speculatively with 

faster-than-light travel by means of plausible extensions of the special theory of relativity and the strange 

physics it produces. For all problems assume that the length of the Enterprise is 200 m and its rest mass 

190 000 tonnes, or 1.9x10
8
 kg, mass of spaceship plus fuel. 

      Note to the student: In the following sections we will discuss the problem of space travel. These 

problems are not intended to give you a deep understanding of relativity. Neither are they supposed to 

teach you to wield "formulas" without understanding. Rather, it is hoped that by (as Einstein put it) 

playing with concepts, the physics of motion will be a source of delight as well as mystery.  
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Interstellar Cantering  (The Newtonian regime)    

The nearest star to us, Proxima Centauri, is about 4.3 light years away. Assume that the maximum speed 

of today's rockets, relative to earth, is just a little more than the escape velocity (53 km/s) needed to leave 

the solar system from Earth. The distance to the sun is about 1.5x10
11

m. Asume that the acceleration and 

deceleration should be about 1g or 10 m/s
2
. 

                 

                                              Fig.  The general velocity time graph for travelling in space 

 

Note that : 

 

1. The slope of the graph is g  (about 10m/ s
2
) and negative g. 

2. The times for accelerating and decelerating are negligible for long distances 

(distances between stars, for example). 
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Fig.     A trip to the planets beyond Jupiter would look like this. The time to accelerate    

 would be short compared to the time of flight. The velocity of the rocket (relative to 

 the Sun would have to be about 53 km/s. 
 

 
In Fig. we have velocity time graph of a SC (rocket) travelling into space. The slope of the graph is the 

acceleration and should be about 10 m/s
2
, the acceleration due to gravity on Earth that we are used to.  

The total distance is the area under the graph.  

 However, we must remember that Newtonian physics is only good for velocities of up to about 

0.1 c. See the velocity time graph below (actually an energy-time graph). We will begin by making a few 

calculations based on today’s technology to show that interstellar travelling is not possible within the 

lifetime of humans. 

 

Discussion: 

The escape velocity from the solar system, starting from the Earth’s surface is very high, about 53 km/s. 

As we have already shown in LCP 2, the escape velocity from Earth is about 11.2 km/s. The Earth moves 

with a speed of about 30 km/s around the Sun. In addition, the escape velocity from a circular orbit is  

√ 2 times the orbital velocity of a satellite. (See LCP 2). This adds up to about 53 km/s. 

 

Time:years   

Velocity= ~53 km/s (relative to the sun)  
 

a = g 
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To achieve escape velocity using a rocket of total mass mi   (total mass: mass of rocket plus mass of fuel), 

we can only have a “payload” of  less than 1 %. You can show this by using the rocket equation we 

developed in LCP2 and in LCP 5 II:                                              v = ve ln mi / mf               

 Assuming an escape velocity of the gas that propels the rocket to be about 5 km/s you can show 

that only about less than 1% of the total mass of the rocket can be a payload, that is, for every kg of  

payload you would have to burn about 40,000 kg of fuel.! 

 

 

Fig.   Isaac Newton's analysis of orbital motion and escape velocity. Projectiles A and B fall back 

to earth. Projectile  C achieves a circular orbit, D an elliptical one. Projectile E escapes. 
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(I) Elementary equations for space travel, using Newtonian dynamics  

                                      Rocket equation: 

                                                  v = ve ln (mi/mf),    

                                                 Kinetic energy equation: 

                                                  E = ½ mv
2
 

            where mi is the initial mass (mass of rocket plus mass of fuel) and mf  is the final mass of            

             the rocket (payload). See LCP 2 and LCP 5II.. 

 

Travelling in the solar system  

IL **** Travelling in the solar system  

http://www.classzone.com/books/earth_science/terc/content/visualizations/es2701/es2701page01.cfm 

A wonderful animation to give a sense of the vast distance involved to travel to the outer regions of our 

solar system. Taken from IL  : 

At the speed of today's fastest spacecraft (~20 km/second), it would take almost ten years to 

travel this distance. Even at the speed of light, the trip would last 5 1/2 hours. In this animation, 

the apparent speed of the viewer is over 300 times the speed of light. 

Questions and problems 

 1.  How long would it take a rocket to travel to Neptune, a distance of about 30 AU? The speed you 

are allowed is the escape velocity from the solar system (starting from Earth) or about 53 km/s.  

2.  How long would it take to reach the nearest star, about 4 LY (light years)?  Why is such an 

undertaking, even if it were achievable, not realistic? 

3.  The energy required for such a trip is large but not beyond today's technological capabilities. 

Refer to the Table I and calculate the energy involved and the mass of propellant required for 

such a trip. Clearly, the energy is expended only during the acceleration and deceleration periods 

and very little during the near constant speed trip. 

  That means that the energy required to travel to the nearest star would be almost the 

same. This may be a surprise to most students. (Remember that the gravitational force falls off 

inversely as the square of the distance.) 
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4.              Discuss the feasibility of such a trip with respect to (i) the time duration, and (ii) the  

  energy expenditure.   

5.  Imagine that you had the energy available to accelerate at 1 g (to produce an artificial  

  gravity like that of an RRS to a maximum speed and then decelerate at 1 g to the   

  nearest star, 4.3 light years away. Remember you are using Newtonian physics, 

  a.    What would be the maximum energy of the rocket? 

  b. How long would the trip take, as measured from the Earth and as measured in the 

   rocket? 

  c.          How much energy per kg mass would it require? 

  d.          Compare this energy with the energy available in Table I. Comment  

                                                                                                      

For the following see LCP 13. In addition, the formulas will be discussed in more detail later in 

this presentation 

(II) Relativistic kinematics:    (See LCP 13) 

IL **** An excellent visual description of the STR. 

http://abyss.uoregon.edu/~js/ast122/lectures/lec20.html 

               1.      t = t’ / (1-v
2
/c

2
)
1/2   

 (time dilation) 

               where t is the time as measured on Starbase, t’ is the time as measured by  

   the crew on spaceship, and c is the velocity of light in vacuum: 3x10
9
 m/s.               

               2.              l = l’ (1-v
2
/c

2
)
1/2 

   (length contraction) 

              where l is the distance travelled as measured by the crew on spaceship and 

   l’ is the distance as measured on  Starbase. 

  (III)  Relativistic dynamics 

              3. E = m0c
2 

/ (1-v
2
/c

2
)
1/2 

    

   where m0 is the “proper mass” (mass as determined in the spaceship) 

 

                4.      p =  m0 v / ((1-v
2
/c

2
)
1/2                            

     ( For relativistic momentum equation) 

  where p is the relativistic momentum and v is the velocity of the rocket. 
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(IV) Relativistic addition of velocities  

               Vrelative = [(v’ + v) / (1 + v’ v/ c
2
) ]   (absolute value!) 

 

where Vrelative  is the relative velocity , or the velocity as measured from Starbase. 

Note that velocities are vector quantities and therefore the absolute value is taken for Vrelative . 

(V) Relativistic kinematics of constant acceleration 

                        Comment for V: The following is taken from  (        ):  

It might be argues that, since the STR compares only inertial frames of reference ewe cannot 

deal with the problem of acceleration. The following explanation for how this can be done is 

taken fro IL : 

First of all we need to be clear what we mean by continuous acceleration at 1g. The acceleration 

of the rocket must be measured at any given instant in a non-accelerating frame of reference 

travelling at the same instantaneous speed as the rocket. This acceleration will be denoted by a. 

The proper time as measured by the crew of the rocket will be denoted by T and the time as 

measured in a the non-accelerating frame of reference in which they started will be denoted by t. 

We assume that the stars are essentially at rest in this frame. . The distance covered as measured 

in this frame of reference will be denoted by d and the speed v. The time dilation or length 

contraction factor at any instant is a function of  gamma.  

We will derive some of these equations later.  

1.  v = at / {(1 + (at/c )
2
  }

1/2                                
            

 where a is the acceleration of the rocket as determined in the spaceship by the force of a 

 unit mass on a spring; t is the time as measured from Starbase, and v is the velocity as 

 measured from Starbase.  

         2.    t’ = c/a arcsinh ( at/c) 

 where t, t’, and c have been defined before, and  

                                                     3.   L = c
2
/a  {[ 1 + (at/c)

2
]
1/2

 – 1}                                           

 where L is the distance travelled as measured from  Starbase, and a and c have already  

 been defined. 



LCP 14  STAR TREK 

11 

 

         4. T = { 1 + (at/c)
2 

}
1/2 

            where T is the time duration as measured in the space craft. 

How good is Newtonian physics for high speeds? 

1.  If you applied Newtonian mechanics to study the motion of the Enterprise at "low"   

 speeds (speeds less than 0.1 c) you would find that the equations would give you reliable   

 answers.  However, at high speeds these equations are not valid any more.  Test this   

 statement for velocities of 0.01 c, 0.1 c, and 0.99 c.  Comment. 

2.  When the velocity of the Enterprise is 0.1 c what percentage error will you have in your 

 calculation of energy, momentum, etc., based on Newtonian mechanics?  

3. At what velocities will the error of the calculations be more than 100%?  

4. When the Enterprise is travelling with v = .99 c, what is its mass, length, and kinetic energy, as 

measured from the inertial frames of reference of  1.  Starbase, and  2.  the Enterprise 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                            

 

 

 Fig.   Velocity-time graph for relativistic motion. Purple line is Newtonian and  

 red line is Einsteinian. 
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Research problems for the student: 

1.  Because mass is ejected during the acceleration and deceleration phases only, the actual energy 

required is not given by the expression ½ Mv
2
. Discuss first and then look up the solution to the 

"general rocket problem" in one of the college texts cited in the references.  

  

 

                                                         Fig. The Enterprise in deep space 

2.  Captain Kirk orders a leisurely voyage of 0.1 c velocity from earth to Proxima Centauri (c is the 

speed of light). The acceleration and deceleration phases are to be of equal length at 1 g (10 m/s
2
). 

The selection of an acceleration of 1 g would, of course, provide an artificial gravity that is earth-

like. Consider the acceleration phase "Newtonian" for both cases.   

3.  How long would the trip take, assuming Newtonian physics still worked at this speed, and 

assuming the energy is available?     

4.  In many episodes of Startrek one hears Scottie say: "use rocket propulsion". If the rockets of the 

Enterprise were using conventional fuel (H2 O2, for example) and the exhaust velocity (relative to 

the starship) is 4 km/s, what would be the value of Mi/Mo for the rocket, for 

 v = 0.1 c, using the rocket equation given in t Appendix 1?  

5.  If Scottie ordered the use of ion thrust with an exhaust velocity of 100 km/s, what would be the 

value of Mi/Mo now?        

.           The above sequence of questions should make you realize the limits imposed by the two 

physiological constraints: accelerations cannot be much higher than 1 g for sustained acceleration 

periods and that gravity-free coasting time of more than a few months tends to produce a human 

jellyfish. The Mi/Mo ratio calculated for conventional and  ion thrust propulsion should show you 
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the impracticality of reaching high speeds with other than matter-antimatter annihilation 

propulsion. Discuss briefly by elaborating on these points.         

3.  Approaching a solar system in quadrant IV A, sector 13, Mr. Spock reports that sensors indicate a 

class m (Earth-like) planet. Captain Kirk gives orders to manoeuvre the Enterprise into a circular 

orbit around the planet. Before this can be done, however, the mass of the planet must be 

determined. In order to do this Mr. Spock uses the information that a very small moon, with a 

mass of approximately 10
11

  kg, is in a circular orbit with a period of 90 minutes, approximately 

500 km above the planet's surface. The diameter of the planet is optically determined to be about 

1.3x10
7
m.  

 As soon as the Enterprise is in orbit Captain Kirk orders a landing party to be beamed down. He 

turns to Spock and says: "By the way, Spock, what is the gravity on the surface?" Raising his right 

eyebrow Spock answers: "Earth_like, sir." Confidently the party enters the transformer room and beams 

down to the surface. Calculate the approximate value of the surface gravity. Was Spock right?                                    

   

Fig. Teleportation in Star Trek 

 

  Interstellar Trotting 

 The successful solution of the problems in part A should have convinced you that interstellar 

journeys in a single lifetime at leisurely speeds of 0.1 c or less are simply not possible, given the 

constraints of time and energy requirements.  In this section we shall see that for speeds between 0.1 c 
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and c the special theory of relativity enables the prediction of at least the possibility of interstellar space 

travel.   

 We shall, however, discover that in order to make such journeys the theory predicts the 

possibility of space travel compatible with Star Trek requirements, but incompatible with energy 

requirements.  Moreover, for Star Trek purposes one would like to engage in interstellar travel and return 

to Starbase five years later essentially unchanged physiologically relative to Starbase time. However, the 

twin paradox principle would seem to violate this dramatic requirement. The following sample questions 

explore these problems of elementary relativistic space travel. 

                                       

 

 

 

 

 

 

 

 

 

 

 

 

Relativistic space travel (See LCP 13) 

1.  The quantity R = (1-v
2
/c

2
)

1/2
 is fundamental in transforming the equations of Newtonian 

 mechanics to those of relativistic physics.  You can see from Table II that this quantity occurs as 

 either R or as its reciprocal 1/R. 

 a.  As a preliminary exercise plot the quantity 1/R against v and then relate this graph to  

  energy, mass and momentum.  This will tell you how these important physical quantities,  

  as measured from Starbase, change with the velocity of the Star Ship.                                    

 b.  Now plot R against v and relate this graph to the time and distance travelled.  For  

  example, this graph will tell you how the distance and time, as measured from the frame  

  of reference of the starship, changes with the velocity of the Enterprise. 

Reaching the near-by stars 

           Fig.   The Twin Paradox. See LCP 13 
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1.  Captain Kirk is in a hurry to reach Proxima Centauri. Assume that the Enterprise is able to 

 accelerate and decelerate to very high velocities in short time intervals and that the crew is 

 "protected" against the law of inertia. 

 a. How long would it take (ship time) to reach the star if the velocity is .99998c?  What 

 time interval would that correspond to on Starbase? 

 b. Our present understanding of physics and physiology would prohibit accelerations of 

 much over one g (10 m/s
2
).  Microbes, on the other hand, can be accelerated in super 

 centrifuges to about 10 000 g's without being destroyed.  The Star Ship Enterprise seems 

 to be capable of accelerations of that order with no apparent ill-effects on the crew.  

          On the other hand, we know that when we jump from a diving board, for example, we feel no force. 

Does that mean that if we fell freely in any gravitational field we would feel no force?  

Perhaps, the Enterprise has the ability to "generate" an appropriate gravitational field for force-free 

acceleration?  Discuss. 

The energy requirements for long journeys in a galaxy 

 

 Energy available x 10
14

 

Fuel                       Types                   Final Product              ___________________      (J/kg)                                                               

 _________________________________________________        Mass                                                                                                          

H2 – O2                                  Chemical                    H2O                                       6.3 10
-8 

Uranium                   Fission                         Iron                                       1.1  

H-H                            Fusion                         He                                          6.3  

Matter-Antimatter   Radiation                    Photons                                 900 

                                                 Table I: Energy Availability            

 

 Starbase decides that an extraordinary journey to the edge of our galaxy is Captain Kirk's next 

mission. The distance is 10 000 light years.  Assume that at sub-light speeds the Enterprise is capable of 

reaching 0.9999999998 c and that acceleration and deceleration times are negligibly small.   

a.    Calculate the mass of matter-antimatter that would be required to travel to the edge of the         

 galaxy. 

 b.  How long would the journey take, measured on the Enterprise?  On Starbase? 

Note:  This problem demonstrates that even if 100% matter-antimatter energy source is assumed (the 

ultimate energy source, so far as we know) most of the mass of the Enterprise would have to consist of 

fuel
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Discussion in preparation for solving the problems below... 

 1. Rapid accelerations and decelerations have required Dr. McCoy to work overtime with cell-

repair surgery, so Captain Kirk orders a return trip in which the Enterprise is to accelerate and decelerate 

uniformly to and from the midpoint of the journey, X light years away, when a = g or 10 m/s
2
 and 

maximum velocity is not to exceed 0.9999999998 c. 

a.  Calculate the maximum distance the Enterprise could travel with these   

  constraints.Assume that sufficient energy is available for the trip. 

b.  Now calculate the maximum velocity reached and the times of the trip   

  measured  by Starbase and by the crew of the Enterprise respectively, for a  

  distance of 100 light years, 1000 light years. 

c.  You may have suspected by now that the energy available is not sufficient  

  for this  kind of trip. Calculate the ratio of Mi/Mo. 

d.  What then is the maximum distance the Enterprise could travel given that  

  only 90%  of its mass can be used as fuel for the matter-antimatter energy  

  source? 

2.  In the light of what you have discovered about space travel, especially the energy       

 requirements for such travel, discuss the general question of the possibility of interstellar 

travel. 

3.  The Star Ship Enterprise often travels vast distances at speeds close to the speed of light.  

The mandate of the crew was to explore space for a five year period (as measured by clocks 

on board).  Thus the crew would have aged five years when they returned to Starbase. What 

and whom would they find on returning to Starbase, according to the special theory of 

relativity?  Discuss. 
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                           Fig.  Rocket moving in deep space:  Einstein’s equivalence principle. 

 

8.5  Intergalactic Galloping 

From sample problems and questions as those in Parts A and B it is clear that at sub-light speeds the 

Enterprise would never be able to travel between stars, not to speak of intergallactic in the lifetime of its 

crew.  Moreover, it is clear that for any conventional fuel the quantity to be carried would be vastly more 

than the mass of the Star Ship itself. Indeed, as we have seen, even if we assumed that the source of the 

rocket drive was the direct conversion of matter into energy the result would be similar. Thus if we were to 

have slower than light travel between stars and galaxies that did not involve multiple lifetimes and 

intolerable quantities of fuel on board, we would require both longer human lifetimes and the ability to 

somehow extract energy from space en route.  For such reasons as these, faster-than-light travel, were it 

physically and humanly possible, would be very attractive indeed. 

 Before Albert Einstein's 1905 article on the electrodynamics of moving bodies, in which he raised 

the hypothesis that c = 3x10
8
 m/s was a universal constant to the status of a postulate, intuition seemed to 

be against the notion of a "fastest speed".  Gottfried Leibniz, Isaac Newton's great contemporary, had an 

argument to show that this notion was in fact self-contradictory.  The argument went roughly as follows.   
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Assume that one has a spoke wheel every point on the rim of which is rotating at the fastest speed. Then we 

can always extend the spoke an arbitrary distance beyond the rim. But any point on the extension of that 

spoke must be covering a greater distance than any point on the rim during the revolution of the wheel. 

Consequently the point on the rim cannot be travelling at the fastest speed, contrary to our initial 

hypothesis.   

 

 

                                                            Fig, The thought experiment of Leibniz 

Of course, Leibniz assumed that the objects at any speed would retain their rigidity a dimensional 

permanence, that is, their dimensions as measured from any6 frame of reference would be the same.   

As we have seen, Einstein’s STR changed this assumption. 

   A number of contemporary physicists, including Gerald Feinberg, Yakov P. Terletkii, Olexa-

Myron Bilaniak and George Sudarshan have argued that faster-than-light travel for particles is in no way 

precluded by Einstein's special theory of relativity. There is, as yet, no experimental evidence that faster-

than-light particles exist. But this is not surprising since their properties would be such that their detection 

would be very difficult. 

 Such a situation offers us a unique opportunity to try to think and calculate well at an elementary 

level about matters at the limit of our physical understanding. In the context of a programme like Star Trek 

we already have thought about these matters and the implications involved. (You are now urged to read the 

article cited in the references by Gerald Feinberg.) 

 Our predictions of the properties of faster-than-light particles, or tachyons, are in the main derived 

from relativistic kinematics.  Let us begin this exciting topic with the following questions. 
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Hyper-drive: Faster-than-light-travel 

 1.  When Mr. Spock, as science officer aboard the Enterprise, wishes to make some   

 quick calculations about some upcoming faster-than-light travel he contemplates   

 equation III in Table II, namely: 

         E
2
 = M

2
 c

4
 / (1-v

2
/c

2
)
1/2

 

  for the case in which v is greater than c. 

  a.   He usually writes this equation as 

E
2
 = M

2
 c

4
 (1-v

2
/c

2
) 

where E
2
 is assumed to be an intrinsically positive number.  For this case, namely for positive E

2
 and for v 

greater than c, what must be the mathematical character of the quantity M
*
  ?  Is an imaginary mass any 

more puzzling as a physical quantity that there are luxons (photons and neutrinos) which are particles that 

travel only at the speed of light and which, though they have a relativistic mass given by m = E/c
2
 

nonetheless have a zero rest mass?  Discuss. 

  b.  Spock always has a graph of E =  M
*
c

2
 / (v

2
/c

2
-1)

1/2
 plotted as well as  

   E = Mc
2
 / (1-v

2
/c

2
), so that he can rapidly estimate energy-velocity   

   relationships.    
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Fig.  Commander Spock's "Travel Guide". (Note: v is expressed as as a fraction of c) 

  

       

 

Note: The velocity  V 

expressed as  

v/c: 0.1c, 0.2c, 0.3c …. 



LCP 14  STAR TREK 

21 

 

  2.  In order to escape a Klingon warship chasing him Captain Kirk orders the Enterprise to go into 

 hyperdrive (that is, into faster-than-light travel). 

 a.  When the Enterprise crosses the speed of light barrier, need we assume that  

  its mass undergoes any intrinsic change?  Should we assume that for   

  observers on board ship no difference in nature of its matter could be   

  noticed?  Would there be a difference from the vantage point of Starbase? 

 b.  When thinking about faster-than-light travel Spock has to keep in mind   

  some differences which his graphs suggest to him. For example, for   

  slower-than-light travel acceleration of particles requires energy.  For   

  particles travelling at the speed of light (the luxons) the notions of   

  acceleration and deceleration do not apply.  Why not?  Discuss. 

c.  Spock also knows that tachyons (faster-than-light particles) naturally   

  accelerate.  Why is that?  Should it take energy to decelerate a tachyon or  

  to keep it moving at a constant speed?  Or is there any sense to such a   

  notion?  Discuss. 

     (Note: Clearly, for the Starship Enterprise it is important that when it is in              

  hyperdrive it can be kept at a constant faster-than-light speed or  

                    in a decelerated state.) 

 Discussion in preparation for solving the problems below... 

1.  After pursuing a Klingon spaceship with an offer of friendship Captain Kirk   

  abandons the attempt when it becomes clear that the pursuit would take him to the  

  edge of the Galaxy.  He then gives order to "turn around" and proceed in the   

  opposite direction back to Starbase. The pursuit begins at low speeds and proceeds  

  close to that of light. Then the Enterprise is put into hyperdrive, reaching high   

  speeds, just before the decision is made to travel back to Starbase. 

  Calculate the relative speeds between the two spaceships, relative to  

  (as "seen" from star base) when: 

(i)  The speed of the Enterprise is 0.04 c and that of the Klingon spaceship is   

  0.88 c, when both are travelling in the same direction and when they are   

  travelling in opposite directions. 

     (ii) The speed of the Enterprise is 0.98 c and that of the Klingon spaceship  
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    0.88 c.  Compare the relative speeds for the cases above with the answers  

  you would obtain if Newtonian physics applied at high speeds. 

     (iii)   The speed of the Enterprise is 0.99 c and that of the Klingon spaceship  

    1.3 c. 

     (iv)   The speed of the Enterprise is 3 c and that of the Klingon spaceship 10c. 

   2.  Captain Kirk is often heard saying such things as: "Let's come to full stop", and  

   "Let's turn around", when the Enterprise is at high speeds, say 3 c.  What problems 

   would you encounter in carrying out these commands?  Discuss. 

             

                                    Fig. An animation showing the motion of a tachyon. 

 
Tachyon visualization, analogous to the sound made by a supersonic jet. Since a tachyon moves faster than 

the speed of light, we can not see it approaching. After a tachyon has passed nearby, we would be able to 

see two images of it, appearing and departing in opposite directions.  

 

The black line is the shock wave of Cherenkov radiation (analogous to a sonic boom), shown only in one 

moment of time. This double image effect is most dramatically illustrated for an observer located directly 

in the path of a faster-than-light object (in this example a sphere, shown in grey).  

 

The right hand bluish shape is the image formed by the blue-doppler shifted light arriving at the observer 

— who is located at the apex of the black Cherenkov lines — from the faster-than-light sphere as it 

approaches; it moves "backwards" as light arrives from earlier and earlier positions of the sphere before it 

arrived at the observer. The left-hand reddish image is formed from redshifted light that leaves the sphere 

after it passes the observer; it moves "forward" following the sphere. 
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 Since the object arrives before the light the observer sees nothing until the sphere starts to pass the 

observer, after which the image-as-seen-by-the-observer slowly splits into two — one of the arriving 

sphere (to the right) and one of the departing sphere (to the left). 

The problem with tachyons 

1.  Let us look at some of the puzzling results of faster-than-light physics.  Some of   

  them have been satisfactorily explained but others are open to speculation.  Think  

  about them, read some of the papers cited in the references, and attempt to offer   

  some plausible explanations of your own.  Here they are: 

  a.  A faster-than-light spaceship would have to lose energy in order to  

   speed  up and gain energy in order to slow down.  The lower limit  

   of speed is the velocity of light, while there is no upper limit. 

  b.  If the Star Ship Enterprise were moving with infinite speed as seen  

   by one observer, its speed as seen by another observer in motion   

   with respect to the first would not be infinite but some finite value  

   greater than c. 

  c.  The number of spaceships observed in a region of space depends on  

   the observer.  Think of what implications this would have in an   

   encounter between Klingon and Federation spaceships. 

   d.  The relative speed between two spaceships that travel faster than   

    the speed of light cannot equal or exceed the speed of light. 

  e.  The method of communication at faster-than-light speeds is   

   problematic and at the  moment open to speculation.  Can the crew  

   now communicate?  What would it be like to shoot tachyons from a  

   Star Ship in order to communicate? 

  f.  The special theory of relativity restricts signals from moving faster  

   than the speed of light. The existence of signals faster than the   

   speed of light implies the existence of signals into the past.  But this  

   in turn suggests the possibility that cause can follow its effect or an  

   effect can precede its cause. 
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                            Fig. An encounter with a Klingon spaceship. 

 One of the big problems that the navigator of the Enterprise obviously has solved is 

 connected with the nature of space at relativistic velocities and at velocities faster than the 

 speed of light.  The four-dimensional equations of relativistic kinematics (three space dimensions 

 and one time dimension) suggests that the navigator of the Enterprise would have the difficult task 

 of continually readjusting changing positions of the stars.    

 For example, if Captain Kirk gave orders to travel toward the North Star at a velocity of 0.9 c, the 

 constellations Leo, Hercules, Cassioeia, Pegasus, Orion, and the Big Dipper (all these 

 constellations ordinarily surround Polaris) would all tend to crowd together at Polaris; alas, 

 constellations no more.   
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                                        Further, the view from the rear of the Enterprise, which at low speeds would have 

included the Southern Cross, Sirius, and Canopus, at speed of 0.9 c would show very few stars, not 

including the ones just mentioned.  In fact, the Southern Cross and Canopus would, as if by magic, appear 

in the front view, around Polaris.  Indeed, as the Enterprise approaches the speed of light, all stars would 

appear to converge on it.  What would the crew see and how would they navigate on crossing the light 

barrier and entering the world of tachyon-like travel? 

 Questions and speculations like these involve only reasoning about simple relativistic equations.  

But the conclusions to which one is driven are certainly startling. If there  are tachyons, as the equations 

relating velocity and energy we looked at suggest, such entities would have to have imaginary mass.  They 

would have to have a limiting minimum velocity c.  It would require energy to slow down these entities 

and as they lost energy they would accelerate!  For faster-than-light particles, there must be at least one 

frame of reference in which the particle would be judged to have infinite velocity!  Can this be derived 

from the energy-velocity equation alone? 

 We are thus led to entirely different kinds of questions.  For example, by what conceivable 

mechanism could an entire Star Ship have its mass transformed from ordinary to imaginary and back 

again?  The greatest nineteenth century physicist, James Clerk Maxwell, was reported to have been 

amazed by the transmission and detection of electromagnetic waves as developed by Alexander Graham 

Bell.  Maxwell's amazement is noteworthy because it was he who discovered the equations that laid the 

groundwork for all our present knowledge of electromagnetic theory.  His equations of electromagnetic 

theory left the discovery of the telephone as a logical possibility but for  which no mechanism was 

suggested.  Should Einstein by amazed by Mr. Spock? 

Front view when travelling at various speeds from “rest” to 0.9999c  

 

 

 

 

 

 

 

 

 

 

 

 



LCP 14  STAR TREK 

26 

 

 

 

 

 

Taken from 

IL     www.fourmilab.ch/cship/aberration.html Remove frame  

 

 

 

Fig. 1 At rest in the middle of the Lattice, we see a normal view, unaffected by aberration. The 

ship's computer displays a graphic to the left of the viewscreen that shows the effect of aberration 

on light arriving from various directions with respect to the direction we're travelling. Stationary 

in the Lattice, no aberration is indicated.  

 

 

 

 

 

 

 

Fig.  Half the speed of light, and we're developing eyes in the back of our head--objects 120° 

from the direction we're moving are shifted so they appear to our right and left. Still, 

relativity accounts for only about 10% of the total aberration.  
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Fig.  Ninety-nine percent: only objects almost directly astern still appear to be behind us.  

 

 

Fig. And finally, we view the Lattice from the midpoint at a velocity of 0.9999 of the speed of 

light. The cell of the Lattice directly behind our ship has been distorted by aberration to 

almost fill the field of view. The rest of the Lattice is reduced to a small grid in the centre of 

the main viewer. The readout to the left of the view shows that even light rays emitted five 

degrees from our stern appear at an angle to the bow of 15°.  

 

 

 

 

 

 

APPENDIX 1: 
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The following formulas are used by Spock: 

                                           E
2
 = M

2
 c

4
 / (1-v

2
/c

2
)
1/2

 

                                                 V   =   (v1    +   v2 )/ (1 + v1 v2 / c
2
 ) 

 

                                          p = m v/[ (1 - (v/c)
2
 ]

.1/2 
  = mvγ 

 

     ( γ = (1-v
2
/c

2
)
-1/2 

) 

 

You can show that for small velocities (velocities less than about .05c) the expression reduces to mv. 

In addition. The distance ∆s is expressed through Pythagoras’ theorem as: 

 

                                         ( ∆s ) 
2
 =  (∆x)

2
    +   (∆y)

2
   +   (∆z)

2
  

 where the symbol describes the difference in the x,  y and z coordinates.      

 

      Therefore, no matter who measures and determines the length, it stays the same. 

 In relativity, however, what is invariant is not the distance but the spaceBtime interval given by an 

expression that still based on Pythagoras= theorem but includes time: 

 

                            (∆s)
2
     =     c

2
 (∆t)

2
    -    [(∆x)

2
   +   (∆y)

2
    +    (∆z)

2
]  

 The invariance of the spaceBtime interval suggests that something absolute and unchangeable 

underlies the physics of special relativity C a four dimensional framework that links space and 

time. 

  Time intervals and space intervals between two events depends on the observer but the 

space-time interval is a four-dimensional distance that takes into account all four coordinates  is 

the same for all observers!  
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Formulas required for solving the problems   

(I) Elementary equations of Newtonian dynamics  

                                      Rocket equation: 

                                                  v = ve ln (mi/mf),    

            where mi is the initial mass (mass of rocket plus mass of fuel) and mf  is the final mass of            

             the rocket (payload). See LCP 2. 

(II) Relativistic kinematics:     

                1.      t = t’ / (1-v
2
/c

2
)
1/2   

 (time dilation) 

               where t is the time as measured on starbase, t’ is the time as measured by  

   the crew on spaceship, and c is the velocity of light in vacuum: 3x10
9
 m/s.               

               2.              l = l’ (1-v
2
/c

2
)
1/2 

   (length contraction) 

              where l is the distance travelled as measured by the crew on spaceship and 

   l’ is the distance as measured from starbase. 

  (III)  Relativistic dynamics  

                                                         E = m0c
2 

/ (1-v
2
/c

2
)
1/2 

    

where m0 is the “proper mass” (mass as determined in the spaceship) 

(IV) Relativistic rocketing 

 
 1.     v  =   {(1 - M

-2
) / (1 +   M

-2
 )} c                  (For matter-antimatter propulsion)                                       

         

    2.      p =  m0 v / ((1-v
2
/c

2
)
1/2                                

           ( For relativistic momentum equation) 

  where p is the relativistic momentum and v is the velocity of the rocket. 

                                                               M = Mi / Mf  

 where Mi  is the initial mass plus matter–antimatter and  Mf   is the final mass of the rocket 

 (payload).  

(V) Relativistic kinematics of constant acceleration 

                                                    1.  v = at / {(1 + (at/c )
2
  }

1/2                                
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where a is the acceleration of the rocket as determined in the spaceship by the force of a  unit 

mass on a spring; t is the time as measured from starbase, and v is the velocity as  measured from 

starbase.  

         2.    t’ = c/a arcsinh ( at/c) 

 where t, t’, and c have been defined before, and  

                                                     3.   L = c
2
/a  {[ 1 + (at/c)

2
]
1/2

 – 1} 

                                                L = c
2
/a (cosh at /c  - 1) 

 where L is the distance travelled as measured from the starbase, and a and c have already 

 been defined.. 

(VI) Relativistic addition of velocities  

               Vrelative = [(v2 –v1) / (1 – v1 v2/ c
2
) ]   (absolute value!) 

where Vrelative  is the relative velocity between spaceship1 and spaceship2, as seen from starbase. 

Note that velocities are vector quantities and therefore the absolute value is taken for Vrelative . 

Appendix 2 

1 An article, taken from the Internet: 

IL  **** http://math.ucr.edu/home/baez/physics/Relativity/SR/rocket.html 

Updated by Don Koks 2006. 

Fuel numbers added by Don Koks 2004. 

Updated by Phil Gibbs 1998. 

Thanks to Bill Woods for correcting the fuel equation. 

Original by Philip Gibbs 1996. 

The following is based on the article you can download from the above IL. This article includes 

the relativistic rocket equations as well as the derivation of equation six below: 

                              M  = γ(1 + v/c) – 1  = exp(aT/c) – 1………………………………..6 

The Relativistic Rocket 

The theory of relativity sets a severe limit to our ability to explore the galaxy in space ships.  As 

an object approaches the speed of light, more and more energy is needed to accelerate it further.  
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(See Fig.  ) To reach the speed of light an infinite amount of energy would be required.  It seems 

that the speed of light is an absolute barrier which cannot be reached or surpassed by massive 

objects.  Given that the galaxy is about 100,000 light years across there seems little hope for us to 

get very far in galactic terms unless we can overcome our own mortality. 

Science fiction writers can make use of worm holes or warp drives to overcome this restriction, 

but it is not clear that such things can ever be made to work in reality.  Another way to get around 

the problem may be to use the relativistic effects of time dilation and length contraction to cover 

large distances within a reasonable time span for those aboard a space ship.  If a rocket accelerates 

at 1g (9.81 m/s
2
) the crew will experience the equivalent of a gravitational field with the same 

strength as that on Earth (See LCP 14).  If this could be maintained for long enough they would 

eventually receive the benefits of the relativistic effects which improve the effective rate of travel. 

What then, are the appropriate equations for the relativistic rocket? 

First of all we need to be clear what we mean by continuous acceleration at 1g.  The acceleration 

of the rocket must be measured at any given instant in a non-accelerating frame of reference 

travelling at the same instantaneous speed as the rocket (see relativity FAQ on accelerating 

clocks).  This acceleration will be denoted by a. 

 The proper time as measured by the crew of the rocket (i.e. how much they age) will be denoted 

by T, and the time as measured in the non-accelerating frame of reference in which they started 

(e.g. Earth) will be denoted by t.  

We assume that the stars are essentially at rest in this frame. 

  The distance covered as measured in the non-accelerating frame of reference will be denoted by 

d and the final speed v.  The time dilation or length contraction factor at any instant is the gamma 

factor γ.                                                                                                                                            

The relativistic equations for a rocket with constant positive acceleration a > 0 are the following. 

First, define the hyperbolic trigonometric functions sh, ch, and th (also known as sinh, cosh, and 

tanh): 

                                      sh x =   (e
x
 - e

-x
)/2 

                                              ch x = (ex + e-x)/2 
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                  th x = sh x/ch x                                                                                                                  

   γ   = ( 1- (v
 
/c)

2 
)
-1/2 

Using these, the rocket equations are
 

 

  t =   (c/a) sh(aT/c)  =  [(d/c)
2
 + 2d/a]

1/2   
……………………  1 

   

  d =  (c
2
/a) [ch(aT/c) - 1]  =  (c

2
/a) ( [1 + (at/c)

2
]
1/2

  - 1)…….. 2 

 

  v =  c th(aT/c)  = at / [1 + (at/c)
2
]
1/2

…………………………. 3 

 

  T =  (c/a) sh
-1

(at/c)  =  (c/a) ch
-1

 [ad/c
2
 + 1]………………….4 

 

  γ =  ch(aT/c)  =  [1 + (v/c)
2
]
-1/2

 = [1 + (at/c)
2
]
1/2

    = ad/c
2
 + 1…….5 

 

  M/m  = γ(1 + v/c) – 1  = exp(aT/c) – 1………………………………..6 

 
 

 

t =  time, as measured in the space port 

 

T = time, as measured in the space craft 

 

a = acceleration = 1.03 ly/y^2 

 

M/m = Mass ratio = Initial mass over final mass 

 

t =  time, as measured in the space port 

(The derivation of some of these equations will be given later) 

These equations are valid in any consistent system of units such as seconds for time, metres for 

distance, metres per second for speeds and metres per second squared for accelerations.  In these 

units c = 3 × 10
8
 m/s (approx).  

However, it is easier to use units of years for time and light years for distance.  Then                          

c = 1 lyr/yr and      g = 1.03 lyr/yr
2
.       
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Using EXCELL calculations, here are some typical answers for a = 1g.  (See Appendix) 

Distance(d)      (lyr) Time(t)   (yr) Velocity(v) Time(T)  (yr) Gamma Mass Ratio 

Nearest star     4.3 5.18 0.982889536 2.30 5.429 9.765107289 

27 27.9 0.99939742 3.93 28.81 56.60263968 

100 101 0.999953771 5.18 104 206.9951922 

500 501 0.999998122 6.73 516 1030.999031 

1000 1000 0.99999953 7.41 1031 2060.999515 

10000 10000 0.999999995 9.64 10301 20600.99995 

100000 100000 1 11.88 103000.9 206001 

 

 

So in theory you can travel across the galaxy in just 12 years of your own time.  If you want to 

arrive at your destination and stop then you will have to turn your rocket around half way and 

decelerate at 1g.  In that case it will take nearly twice as long in terms of proper time T for the 

longer journeys; the Earth time t will be only a little longer, since in both cases the rocket is 

spending most of its time at a speed near that of light.  (We can still use the above equations to 

work this out, since although the acceleration is now negative, we can "run the film backwards" to 

reason that they still must apply.) 

Here are some of the times you will age when journeying to a few well known space marks, 

arriving at low speed: 

        4.3 ly              nearest star                         3.6 years 

         27 ly               Vega                                   6.6 years 

  30,000 ly           Center of our galaxy            20 years 

                          2,000,000 ly         Andromeda galaxy                28 years 

For distances bigger than about a thousand million light years, the formulas given here are 

inadequate because the universe is expanding.  General Relativity would have to be used to work 

out those cases. 
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IL *** Relativistic rocket calculater. 

http://www.cora.nwra.com/~gourlay/software/Java/Voyage/ 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

How much fuel is this?  

The next chart shows the amount of fuel needed (M) for every kilogramme of payload (m=1 kg). 

   d              Not stopping, sailing past:       M              

                                            ____________________________________________                                                    

     4.3 ly        Nearest star                            10 kg 

    27 ly            Vega                                       57 kg 

            30,000 ly       Center of our galaxy             62 tonnes 

                     2,000,000 ly         Andromeda galaxy         4,100 tonnes 

This is a lot of fuel--and remember, we are using a motor that is 100% efficient! 

What if we prefer to stop at the destination?  We accelerate to the half way point at 1g and then 

immediately switch the direction of our rocket so that we now decelerate at 1g for the rest of 

second half of the trip.  The calculations here are just a little more involved since the trip is now 

in two distinct halves (and the equations at the top assume a positive acceleration only).  Even so, 

the answer turns out to have exactly the same form: M/m = exp(aT/c) - 1, except that the proper 

time T is now almost twice as large as for the non-stop case, since the slowing-down rocket is 
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losing the ageing benefits of relativistic speed.  This dramatically increases the amount of fuel 

needed: 

     d                   Stopping at:                         M    

                               ____________________________________    

    4.3 ly              Nearest star                  38 kg 

   27 ly                   Vega                        886 kg 

           30,000 ly     Center of our galaxy       955,000 tonnes 

      2,000,000 ly  Andromeda galaxy       4.2 thousand million tonnes 

Compare these numbers to the previous case: they are hugely different!  Why should that be?   

 

Other fuel options 

Well, this is probably all just too much fuel to contemplate.  There are a limited number of 

solutions that don't violate energy-momentum conservation or require hypothetical entities such 

as tachyons or worm holes. 

It may be possible to scoop up hydrogen as the rocket goes through space, using fusion to drive 

the rocket.  This would have big benefits because the fuel would not have to be carried along from 

the start.  Another possibility would be to push the rocket away using an Earth-bound grazer 

directed onto the back of the rocket.  There are a few extra technical difficulties but expect NASA 

to start looking at the possibilities soon. 

You might also consider using a large rotating black hole as a gravitational catapult but it would 

have to be very big to avoid the rocket being torn apart by tidal forces or spun at high angular 

velocity.  If there is a black hole at the centre of the Milky Way, as some astronomers think, then 

perhaps if you can get that far, you can use this effect to shoot you off to the next galaxy. 

One major problem you would have to solve is the need for shielding.  As you approach the speed 

of light you will be heading into an increasingly energetic and intense bombardment of cosmic 

rays and other particles.  After only a few years of 1g acceleration even the cosmic background 

radiation is Doppler shifted into a lethal heat bath hot enough to melt all known materials. 
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IL *** 

http://scienceworld.wolfram.com/physics/Tachyon.html 

 

 

 

 

 

 

 

Graphical representation of motion based on the relativistic rocket equations, already 

discussed earlier on page 33: 

 

                               t =   (c/a) sh(aT/c)  =  [(d/c)
2
 + 2d/a]

1/2
………………………  1 

 

  d =  (c
2
/a) [ch(aT/c) - 1]  =  (c

2
/a) ( [1 + (at/c)

2
]
1/2

  - 1) ……..   2 

 

  v =  c th(aT/c)  = at / [1 + (at/c)
2
]
1/2

……………………………3 

 

  T =  (c/a) sh
-1

(at/c)  =  (c/a) ch
-1

 [ad/c
2
 + 1]……………………4 

 

  γ =  ch(aT/c)  =  [1 + (v/c)
2
]
1/2

 = [1 + (at/c)
2
]
1/2

  = ad/c
2
 + 1……5 

 
And now we add the equation that connects mass ratio, acceleration and the time T: 

 

                              M/m  = γ(1 + v/c) – 1  = exp(aT/c) – 1……………………….......6 

 
(We will derive some of these equations later in the Appendix). 

 
It is instructive to study the equations above graphically. If we change the units this way: 

 

Distance: Light years (ly).        Velocity: fraction of speed of light c.  Time: years (t, T) 

Aceleration: g (9.81 m/s
2
).      Here : c =1, a = g = 1.03 ly/ y

2
, it is much easier to calculate 

values, especially  when using a calculator. 
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Working with EXCELL it is relatively easy to produce the following graphs: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  1.   The distance-time graph, as measured in the space port. 
 

The Distance-Time graph (d-t)
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Note that we are using      d =  (c
2
/a) ( [1 + (at/c)

2
]

1/2
  - 1) . Clearly, distance travelled (as seen 

from the space port) in this equation can be written as  

 

                                                d ≈ t,   or    D = kt, where k is the constant of proportionality that 

can be calculated from the slope of the graph. What are the units of this constant? 
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2. Distance travelled and the mass ratio M = Mi/ Mf    (as far as 1000 ly) 
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 Finally: 

 

Using equation 2 :       d =  (c
2
/a) [ch(aT/c) - 1]  and equation 6:                               

 
      we obtain:                         M/m  = exp(aT/c) – 1, 

 
it follows that                           aT/c = ln (M /m)  and  substituting into 6 we get: 
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                                                   d = (c
2
/a) {ch ln(M/m) – 1} 

 

 

 

 

 

 

 

 

 

 

 

4.     Gamma  ( 1- (v
 
/c)

2 
)
-1/2

 as a function of velocity expressed as (v/c). 
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               Since     γ   = ( 1- (v
 
/c)

2 
)
-1/2

  we can solve for the velocity. 

 

                     Therefore:                         v = c/ γ  (γ2
   -  1)

1/2 
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    You should now sketch a graph of  

          

5. Velocity of the space craft, as measured from Starbase. 
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6. Velocity of the space craft, as measured in the space craft 
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Derivation of some of the equations of relativistic rocket motion: 
 

(Note:  equation 6:     M/m = γ(1 + v/c) – 1  = exp(aT/c) – 1………………………………..6 

was derived earlier). 

 

The derivation of most of the relativistic equations given above can be found in standard 

university textbooks. It is more difficult, however, to find the derivation of the equations of 

relativistic rocket motion (See above). 

This so, because we have acceleration involved. 

 
The derivation of        v =  c th(aT/c)  = at / [1 + (at/c)

2
]
1/2

…………………………. 3 

 
Special relativity and accelerated frames of reference. 

 

IL *** Short note on STR and accelerating frames of reference 

http://math.ucr.edu/home/baez/physics/Relativity/SR/acceleration.html 

 

Partly taken from IL   above: 

It is a common misconception that the STR cannot handle accelerating objects or accelerating 

reference frames.  It is claimed that general relativity is required because special relativity only 

applies to inertial frames.  This is not true.  Special relativity treats accelerating frames differently 

from inertial frames but can still deal with them.  Accelerating objects can be dealt with without 

even calling upon accelerating frames. 

A simple problem is to solve the motion of a body which accelerates constantly. What does this 

mean?  We don't mean that its acceleration as measured by an inertial observer is constant.  We 

mean that it is moving so that the acceleration measured in an inertial frame travelling at the same 

instantaneous velocity as the object is the same at any moment.  

  If it was a rocket and you were on board you would experience a constant g force. This 

problem can be solved in a number of ways.  One way to solve it  is to think of the  object as 

passing constantly from one inertial frame to another in such a way that its change of speed in a 
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fixed time interval is seen as a Lorentz boost is always the same.  From our understanding of 

adding velocities  we can see that the.. 

  rapidity r of the object must be increasing at a constant rate a with respect to the proper 

 time of the object T.  

 The acceleration a  is related to velocity v by the equation: 

 

                              v = c tanh(aT/c) 
 

This can also be written as                 v= at / [1 + (at/c)
2
]
1/2

…………………………. 

 

The relativistic rocket equation for distance: 

                     d =  (c
2
/a) [ch(aT/c) - 1]  =  (c

2
/a) ( [1 + (at/c)

2
]
1/2

  - 1)…….. 2 

Suppose that, as viewed in the accelerating rocket (constant acceleration) the rocket is 

instantaneously at rest, the rocket experiences a constant acceleration a’. We know from the STR 

that               

                                   Vrelative = [(v’ + v) / (1 + v’ v/ c
2
) ]   (absolute value!) 

where Vrelative  is the relative velocity , or the velocity as measured from Starbase. 

First, it can be shown that              ∆ v = {1- (v/c)
2
 ) ∆ v’ 

by differentiating with respect to v’. Here ∆ v is the change of velocity as measured on Starbase  

(or the Earth). We then write: 

   ∆ v / {1- (v/c)
2
 ) = (dv’ / dt’ ) ∆ t’ = a’t’  

     where  ∆ t’ is the time interval as measured in the rocket’s frame of reference. If the rocket 

starts at t’ = 0 from rest with respect to the Starport, we integrate the left and right-hand  sides to 

obtain: 

                                                c
2
 ∫0 

v
  dv / (c

2 
– v

2
 ) = a’ ∫  dt’. 
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Using general integration tables we can show that this is: 

                                                       c tanh
-1

 (v/c) = a’t’ 

Therefore:                                      v/c = tanh  (a’t’/c) 

To find the total displacement L of the rocket as viewed in Starport a further integration is 

required: 

                                     L =  ∫  v dt  =   ∫  v (dt’ / (1- (v/c)
2
 )

1/2
  

It follows from    that         dt’ = 1/a’ ( c
2
dv / (c

2
 - v

2
 ) 

so that         becomes           L= c
3
 / a’ ∫0

v
  {v / (c

2
 - v

2
 )

3/2 
)dv = c

3
 / a’ { 1/  (c

2
 - v

2
 )

1/2  
- 1 } 

Using              and                        L= c
2
 / a’ {cosh (a’t’ / c -1} 

   This is our equation 2 for relativistic rocket travel, except that L here is equivalent to d in the in 

collection of relativistic equations given above. Note that we have used L rather than d in order 

not confuse the d (distance) with d ( a differential notation). 

              We wrote this equation as      d= c
2
 / a’ {cosh (a’t’ / c -1} 

Derivation of equation 6: 

       M /m = γ(1 + v/c) – 1  = exp(aT/c) – 1……………………………….. 

(Partly taken from IL ) 

Based on conservation of energy: 

The total energy before blast-off is (in the Earth frame)  

                               Einitial = (M+m)c
2
 

 

At the end of the trip the fuel has all been converted to radiation  with energy EL, so the total 

energy is now  

                                                  Efinal = γmc
2
 + EL 
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By the conservation of energy principle these must be equal, so here is our first conservation 

equation:  

      

                                         (M+m)c
2
 = γmc

2
 + EL   ........ (1) 

Based on conservation of momentum 

The total momentum before blast-off is zero in the Earth frame.  

 

                                                  pinitial = 0 
 

At the trip's end the fuel has all been converted to light with momentum of magnitude EL/c, but in 

the opposite direction to the rocket.  So the final momentum is  

 

                                                  pfinal = γ mv - EL/c 

 
By conservation of momentum these must be equal, so our second conservation equation is:  

 

                                              0 = γ mv - EL/c       ........ (2) 
Eliminating EL from equations (1) and (2) gives  

     

           (M+m)c
2
 - γmc

2
 = γmvc 

 

so that the fuel:payload ratio is  

                   

                                              M/m = γ(1 + v/c) - 1  

This equation is true irrespective of how the ship accelerates to velocity v, but if it accelerates at 

constant rate a then 

                                            M/m  = γ(1 + v/c) – 1 

You can  show that  

                           M/m  = cosh(aT/c)[ 1 + tanh(aT/c) ] – 1 

or  

                                           M/m   = exp(aT/c) - 1 

 

Note: The last version is used in the graphing above. 

 

________________________________________________________________________ 
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So we can calculate the distance travelled (as seen from Starbase) in terms of the mass ratio M/m. 

More about Tachyons                                                                                                                       

Tachyons are a putative class of particles which able to travel faster than the speed of light. Tachyons were 

first proposed by physicist Arnold Sommerfeld, and named by Gerald Feinberg. The word tachyon derives 

from the Greek (tachus), meaning "speedy." Tachyons have the strange properties that, when they 

lose energy, they gain speed. Consequently, when tachyons gain energy, they slow down. The slowest 

speed possible for tachyons is the speed of light.  

Tachyons appear to violate causality (the so-called causality problem), since they could be sent to the past 

under the assumption that the principle of special relativity is a true law of nature, thus generating a real 

unavoidable time paradox (Maiorino and Rodrigues 1999). Therefore, it seems unavoidable that if 

tachyons exist, the principle of special relativity must be false, and there exists a unique time order for all 

observers in the universe independent of their state of motion.  

Tachyons can be assigned properties of normal matter such as spin, as well as an antiparticle (the 

antitachyon). And amazingly, modern presentations of tachyon theory actually allow tachyons to actually 

have real mass (Recami 1996).  

It has been proposed that tachyons could be produced from high-energy particle collisions, and tachyon 

searches have been undertaken in cosmic rays. Cosmic rays hit the Earth's atmosphere with high energy 

(some of them with speed almost 99.99% of the speed of light) making several collisions with the 

molecules in the atmosphere. The particles made by this collision interact with the air, creating even more 

particles in a phenomenon known as a cosmic ray shower. In 1973, using a large collection of particle 

detectors, Philip Crough and Roger Clay identified a putative superluminal particle in an air shower, 

although this result has never been reproduced.  

IL  

http://en.wikipedia.org/wiki/Tachyon 

 

Today, in the framework of quantum field theory, tachyons are best understood as signifying an instability 

of the system and treated using tachyon condensation, rather than as real faster-than-light particles, and 

such instabilities are described by tachyonic fields. According to the contemporary and widely accepted 

understanding of the concept of a particle, tachyon particles are too unstable to be treated as existing.
[4]

 By 
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that theory, faster than light information transmission and causality violation with tachyons are impossible 

on both grounds: they are non-existent in the first place (by tachyon condensation)
[4]

 and even if they 

existed (by Feinberg's analysis
[3]

) they wouldn't be able to transmit information (also by Feinberg's 

analysis
[3]

). Despite the theoretical arguments against the existence of tachyon particles, experimental 

searches have been conducted to test the assumption against their existence; however, no experimental 

evidence for or against the existence of tachyon particles has been found.
[5]

 

http://caribe777.blogspot.com/2007/12/faster-than-light-particles.html 

The tachyon, if it existed, would have a number of fascinating properties. Unlike ordinary particles, it 

would have to decrease in mass as it went faster, meaning that the speed of light—at which its mass would 

be infinite—would be just below its slowest possible speed. Likewise, adding energy to the tachyon would 

slow it down, rather than speed it up; to slow it all the way down to the speed of light would require 

infinite energy. For a long time, physicists believed that a tachyon’s mass would have to be an imaginary 

number—a number with a factor that’s the square root of –1—though more recent formulations of tachyon 

theory suggest that such a particle could have a real mass. Most intriguingly, a tachyon, if it is to adhere to 

the principle of relativity, would actually be able to travel backward in time—seemingly making all sorts 

of trouble for the notion of causality. 

 

 

                  IL **** 
http://en.wikipedia.org/wiki/Tachyon 
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